MONKEY IGE SPARCL™ ASSAY Life Diagnostics, Inc., Catalog Number: IGE-SP-3

INTRODUCTION

IgE is the least abundant immunoglobulin in serum, typically present at levels of 1 $\mu g/ml$ per ml or lower. It is involved in allergic reactions, binding to Fc receptors on basophils and mast cells. Subsequent binding of antigen to IgE triggers release of histamine and other vasoactive amines. IgE levels are elevated in asthma, eczema, rhinitis and parasitic infections. IgE is useful as a serum biomarker in such conditions.

PRINCIPLE OF THE ASSAY

The monkey IgE SPARCL™1 (Spatial Proximity Analyte Reagent Capture Luminescence, ref 1) assay uses two different IgE specific monoclonal antibodies. One is conjugated to horseradish peroxidase (HRP), the other is conjugated to acridan, a chemiluminescent substrate. When HRP and acridan conjugated antibodies bind to IgE they are brought into close proximity. With the addition of hydrogen peroxide, HRP catalyzes oxidation of proximal acridan molecules causing a flash of chemiluminescence. Acridan conjugated antibodies distant from HRP produce no signal. This principle allows the development of a homogeneous assay that allows rapid determination of IgE concentrations.

The HRP and acridan conjugated antibodies provided with the kit are mixed with standards and diluted samples in wells of the 96-well white SPARCL™ plate provided with the kit². After incubation for 30 minutes on a shaker at 25°C and 150 rpm, the plate is placed into a luminometer. Trigger solution containing hydrogen peroxide is injected into each well and luminescence is immediately measured. The concentration of IgE is proportional to luminescence and is derived from a standard curve.

MATERIALS AND COMPONENTS

Materials provided with the kit:

Anti-IgE HRP stock
 Anti-IgE acridan stock
 IgE stock
 Store ≤ -70°C
 Store ≤ -70°C
 Store ≤ -70°C

- Diluent; CSD50-1, 2 x 50 ml
- Trigger solution; TS7-1, 7 ml
- White SPARCL[™] plate (12 x 8-well)
- Clear untreated 96-well plate

Materials required but not provided:

- Precision pipettes and tips
- Polypropylene microcentrifuge tubes
- Vortex mixer
- Plate incubator/shaker
- Luminometer capable of simultaneous injection/measurement
- Curve fitting software

STORAGE

Store the HRP conjugate, acridan conjugate, and IgE stock at or below -70°C. The remainder of the kit should be stored at 2-8°C. The SPARCL TM plate should be kept in a sealed bag with desiccant and antioxidant. The kit will remain stable for at least six months from the

date of purchase, provided that the components are stored as described.

GENERAL INSTRUCTIONS

- 1. Please take the time to completely read all instructions before starting your assay. Contact us if you need clarification.
- 2. All reagents used in the assay should be allowed to reach room temperature (25°C) before use.
- 3. It is important that standards and samples be added to the SPARCL™ plate quickly. If testing large numbers of samples, rather than pipetting standards and samples directly into the white SPARCL™ plate using a single channel pipettor, we recommend the following. First, pipette an excess volume of standards and samples into appropriate wells of the clear 96-well plate. Then use an 8- or 12-channel multipipettor to quickly and efficiently transfer 50 µl aliquots to the appropriate wells of the white SPARCL™ plate. The wells of the clear plate hold a maximum volume of 300 µl.
- 4. Follow the sequence of events below when running the assay.

Prime and program the Luminometer

Û

Prepare standards and diluted samples

Û

Prepare HRP + Acridan conjugate mix

<u>û</u>

Add HRP + Acridan conjugate mix to the wells (25 μ l)

₩,

Add standards and samples to the wells (50 μ l)

Û

Incubate plate at 150 rpm/25°C for 30 min

Û

Measure luminescence after injection of Trigger (37.5 µl)

STANDARD PREPARATION

The IgE stock is comprised of purified IgE diluted in a glycerol containing carrier protein matrix.

- 1. Allow the IgE stock to thaw briefly at room temperature.
- 2. Label 8 polypropylene tubes as 500, 250, 125, 62.5, 31.25, 15.63, 7.81 and 3.91 ng/ml.
- 3. Into the tube labeled 500 ng/ml, pipette the volume of diluent detailed on the stock vial label. Then add the indicated volume of stock and mix gently. This provides the 500 ng/ml standard.
- 4. Dispense 150 μ l of diluent into the tubes labeled 250, 125, 62.5, 31.25, 15.63, 7.81 and 3.91 ng/m.
- 5. Pipette 150 μ l of the 500 ng/ml IgE standard into the tube labeled 250 ng/ml and mix. This provides the 250 ng/ml IgE standard.
- Similarly prepare the remaining standards by two-fold serial dilution.

Store unused IgE stock at or below -70°C.

¹ The SPARCL™ technology was developed by Lumigen Corp.

 $^{^2}$ The white SPARCL $^{\!\top\!\!M}$ plate provided with the kit has been treated with a reagent that reduces background chemiluminescence. Untreated plates cannot be used.

SAMPLE PREPARATION

In studies at Life Diagnostics, we tested serum samples from five healthy monkeys and nine monkeys identified as sick. IgE levels were 0.36 \pm 0.22 $\mu g/ml$ (range = 0.039 - 0.64 $\mu g/ml$) and 2.82 \pm 5.29 $\mu g/ml$ (range = 0.039 - 16.74 $\mu g/ml$) respectively.

Because the monkey IgE SPARCL assay uses a homogenous format, a prozone or hook effect occurs at high IgE concentrations. For this reason, serum samples should be tested at a series of dilutions in order to avoid obtaining false low values. Optimal dilutions should be determined by the end user but in order to avoid matrix effects, all samples should be diluted at least 10-fold. The diluent supplied with the kit (CSD50-1) must be used for sample dilution. In the study referred to above, we tested samples at dilutions of 10, 20, 40 and 80-fold.

CONJUGATE MIX PREPARATION

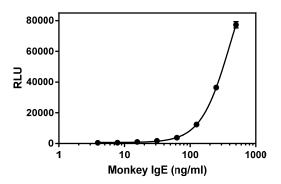
Instructions for preparation of the conjugate mix are detailed on the box that contains the HRP and acridan conjugates. Prepare the mix shortly before use with diluent CSD50-1.

LUMINOMETER SETUP

- The luminometer must be capable of injection and simultaneous measurement of luminescence without any delay.
- 2. Prime the luminometer injection port with at least 1 ml of trigger solution
- 3. Place the injection needle into the injection port, (necessary for BMG luminometers).
- 4. Program the luminometer to inject 37.5 μ l of trigger solution per well and to measure from time zero for 1 second (50 x 0.02 second intervals).
- 5. Define the format of the assay using the luminometer software.
- 6. Because the white SPARCL™ plate is provided as a 12 x 8-well strips, allowing use of fewer than 96-wells, make sure that the luminometer is programmed to inject trigger solution only into the wells being used.
- We use a BMG LUMIstar Omega set at a gain of 3600. Optimal gain should be determined by the end user.
- There are a number of manufacturers of luminometers that are equipped to run a SPARCL™ assay. Please contact Life Diagnostics or Lumigen (www.lumigen.com) to discuss your luminometer.

PROCEDURE

- Before starting the assay ensure that the luminometer is primed with trigger solution and that the injection needle is positioned in the injection port.
- Secure the desired number of SPARCL™ 8-well strips in the holder. Immediately seal unused strips in the resealable bag with desiccant and antioxidant. Store unused strips at 2-8°C.
- 3. Aliquot 25.0 µl of conjugate mix into each well.
- 4. Dispense 50.0 μ l of standards and diluted samples into the wells (we recommend that standards and samples be tested in duplicate).
- 5. Incubate on an orbital micro-plate shaker at 150 rpm and 25°C for 30 minutes.
- After the 30-minute incubation, place the plate in the luminometer and measure luminescence after injection of trigger solution (37.5 μl).
- 7. Remove the plate from the luminometer and discard the used strips. Keep the plate frame if future use is intended.


CALCULATION OF RESULTS

- Before calculating results, review the raw data. If artefacts (RLU spikes) are apparent immediately after injection of trigger solution, eliminate that portion of the luminescence profile from analysis for all wells. We routinely use the sum of RLU values from a 100-980 ms data collection window.
- 2. Determine the sum of RLU values within the data collection window for the standards and samples.
- 3. Using graphing software, construct a standard curve by plotting the sum of the RLU values for the standards versus the log₁₀ of the IgE concentration and fit to a sigmoidal, 4PL model.
- 4. Derive the corresponding concentration of IgE in the samples from the standard curve (remember to derive the concentration from the antilog).
- 5. Multiply the derived concentration by the dilution factor to determine the concentration of IgE in the original sample.
- If the sum of the RLU values of diluted samples fall outside the standard curve, samples should be appropriately diluted and retested.

TYPICAL STANDARD CURVE

A typical standard curve with sum of RLU plotted on the Y-axis versus log_{10} IgE concentrations on the X-axis is shown below. This curve is for the purpose of illustration only and should not be used to calculate unknowns. A standard curve must be run with each experiment.

IgE (ng/ml)	RLU
500	77329
250	36430
125	12349
62.5	3788
31.25	1716
15.63	1036
7.81	549
3.91	481

REFERENCES

 Akhavan-Tafti H. et al. A homogeneous chemiluminescent immunoassay method. J Am Chem Soc. 20;135(11):4191-4 (2013)

Rev 022218
For technical assistance please email us at techsupport@lifediagnostics.com