MONKEY ANTI-KLH IGM SPARCL™ ASSAY
Life Diagnostics, Inc., Catalog Number: KLHM-SP-3

INTRODUCTION
Drug candidates are routinely screened for evidence of immune system regulation. It is important that the immune response is neither enhanced nor diminished since such effects may lead to hypersensitivity or increased susceptibility to infection. Determination of the effect of a drug candidate on anti-KLH antibody levels allows assessment of immune system regulation (ref 1). Animals are immunized with KLH while undergoing drug treatment and serum is collected at appropriate times after immunization. Typically, serum collected 5-7 days after immunization is used for measurement of anti-KLH IgM levels, and serum collected 14+ days post immunization is used to measure anti-KLH IgG levels. Comparison of anti-KLH IgG or IgM levels in drug treated, versus control groups reveals effects on the immune response.

PRINCIPLE OF THE ASSAY
The monkey anti-KLH IgM SPARCL™ (Spatial Proximity Analyte Reagent Capture Luminescence, ref 2) assay uses two different antibody conjugates: HRP conjugated affinity purified rabbit anti-KLH IgG and acridan conjugated anti-monkey IgM monoclonal (clone 7E8-1-13).

Monkey serum or plasma samples are diluted and incubated alongside anti-KLH IgG standards in the wells of a KLH-coated white microtiter plate for 30 minutes. The plate is then washed to remove non-KLH reactive monkey IgM and other serum components. A mixture of rabbit anti-KLH IgG HRP and anti-monkey IgM acridan is then added to the wells and incubated for 30 minutes. During this step, rabbit anti-KLH IgG HRP binds to the many unoccupied epitopes on KLH and acridan conjugated anti-monkey IgM binds to monkey anti-KLH IgM that is also bound to KLH. HRP-conjugated rabbit anti-KLH IgG and acridan conjugated anti-monkey IgM antibodies are thereby brought into close proximity. Following a wash step, the addition of hydrogen peroxide (trigger solution) facilitates HRP catalyzed oxidation of proximal acridan molecules causing a flash of chemiluminescence. The level of monkey anti-KLH IgM in the sample is proportional to the luminescence. Actual values are derived from a standard curve.

MATERIALS AND COMPONENTS

Materials provided with the kit:
- Anti-KLH HRP conjugate stock. Store ≤ -70°C
- Anti-monkey IgM acridan conjugate stock. Store ≤ -70°C
- Monkey anti-KLH IgM stock (2 vials)
- KLH coated plate (12 x 8-well, white plate)
- Sample diluent (YD50-1)
- Conjugate diluent (CSD10-1)
- 20x Wash solution (TBSS50-20)
- Trigger solution, 7 ml (TS7-1)

Materials required but not provided:
- Precision pipettes
- Polypropylene tubes
- Vortex mixer
- Micro-Plate incubator/shaker (25°C, 150 rpm)
- Plate washer (preferably a strip-well washer)
- Luminometer capable of simultaneous injection & measurement
- PC graphing software

STORAGE
Store the HRP and acridan conjugates at or below -70°C. The remainder of the kit should be stored at 2-8°C. The KLH coated plate should be kept in a sealed bag with desiccant. The kit will remain stable for at least six months from the date of purchase, provided that the components are stored as described.

GENERAL INSTRUCTIONS
All reagents used in the assay should be allowed to reach room temperature (25°C) before use.

WASH SOLUTION PREPARATION
The wash solution is provided as a 20x stock. Prior to use dilute the contents of the bottle (50 ml) with 950 ml of distilled or deionized water.

STANDARD PREPARATION
1. Reconstitute the lyophilized monkey anti-KLH IgM stock with deionized or distilled water as described on the vial label. Mix gently until dissolved.
2. Label 8 polypropylene tubes as 2500, 1250, 625, 312.5, 156.3, 78.1, 39.1 and 19.5 ng/ml.
3. Into the tube labeled 2500 ng/ml, pipette the volume of diluent (YD50-1) detailed on the stock vial label. Then add the indicated volume of stock and mix gently. This provides the 2500 ng/ml standard.
4. Dispense 200 µl of diluent into the tubes labeled 1250, 625, 312.5, 156.3, 78.1, 39.1 and 19.5 ng/ml.
5. Pipette 200 µl of the 2500 ng/ml anti-KLH IgM standard into the tube labeled 1250 ng/ml and mix. This provides the 1250 ng/ml anti-KLH IgM standard.
6. Similarly prepare the remaining standards by two-fold serial dilution.

Please Note: If future use of the reconstituted IgM stock is intended, it should be stored frozen at or below minus 20°C.

SAMPLE PREPARATION
The levels of anti-KLH IgM in serum or plasma from animals immunized with KLH will depend on the route of injection, adjuvant, amount of KLH injected and the timing of serum collection. Researchers must therefore determine the optimum dilution. In order to avoid matrix effects, we recommend a minimum dilution of 200-fold. All dilutions must be performed with the YD50-1 diluent provided with the kit.

The figure below illustrates the levels of monkey anti-KLH IgM and IgG found in cynomolgus monkey serum. Monkeys were injected with KLH (4 mg, i.m.). Anti-KLH IgG and IgM were determined using kits KLHG-SP-3 and KLHM-SP-3. Low levels of anti-KLH IgM levels were detectable on day zero; 18.6±11.9 µg/ml on day eight (mean±SD, n=3) and 462.5±48.7 µg/ml on day twenty-four (mean±SD, n=3). We found that an 800-fold sample dilution worked well for the 8-day and 24-day samples.

1 The SPARCL™ technology was developed by Lumigen Corp.
CONJUGATE PREPARATION

Prepare the conjugate mix 5-10 min prior to use according to the instructions detailed on the box that contains the HRP and acridan conjugates. The clear diluent (CSD10-1) must be used for dilution of the conjugates.

LUMINOMETER SETUP

1. The luminometer must be capable of injection and simultaneous measurement of luminescence without any delay.
2. Prime the luminometer injection port with at least 1 ml of trigger solution.
3. Place the injection needle into the injection port, (necessary for BMG luminometers).
4. Program the luminometer to inject 37.5 µl of trigger solution per well and to measure from time zero for 1 second (50 x 0.02 second intervals).
5. Define the format of the assay using the luminometer software.
6. Because the white KLH coated plate is provided as a 12 x 8-well strips, allowing use of fewer than 96-wells, make sure that the luminometer is programmed to inject trigger solution only into the wells being used.
7. We use a BMG LUMIstar Omega set at a gain of 3600. Optimal gain should be determined by the end user.
8. There are a number of manufacturers of luminometers that are equipped to run a SPARCL™ assay. Please contact Life Diagnostics or Lumigen (www.lumigen.com) to discuss your luminometer.

PROCEDURE

1. Before starting the assay ensure that the luminometer is primed with trigger solution and that the injection needle is positioned in the injection port.
2. Secure the desired number of KLH-coated 8-well strips in the holder. Immediately seal unused strips in the resealable bag with desiccant. Store unused strips at 2-8°C.
3. Dispense 75 µl of standards and diluted samples into each well (we recommend that samples and standards be tested in duplicate).
4. Cover the plate and incubate at 25°C for 30 minutes on an orbital shaker (150 rpm).
5. Aspirate the well contents and wash the wells (5 x 400 µl) using a plate washer.
6. Remove remaining droplets of wash solution by striking the inverted plate firmly on a pad of paper towels.
7. Dispense 75 µl of conjugate mix into the wells.
8. Cover the plate and incubate on an orbital micro-plate incubator shaker at 25°C and 150 rpm for 30 minutes.
9. After the 30-minute incubation wash the wells as detailed in steps 5 & 6 of this section.
10. Place the plate in the luminometer and measure luminescence after injection of trigger solution (37.5 µl).
11. Remove the plate from the luminometer and discard the used strips. Keep the plate frame if future use is intended.

CALCULATION OF RESULTS

1. Before calculating results, review the raw data. If artefacts (RLU spikes) are apparent immediately after injection of trigger solution, eliminate that portion of the luminescence profile from analysis for all wells.
2. Using graphing software, construct a standard curve by plotting the luminescence (RLU) for the standards versus the log10 of the anti-KLH IgM concentration in ng/ml.
3. Fit the data using a variable slope, four-parameter logistic curve.
4. Derive the corresponding concentration of anti-KLH IgM in the samples from the standard curve (remember to derive the concentration from the antilog).
5. Multiply the derived concentration by the dilution factor to determine the actual concentration of anti-KLH IgM in the sample.
6. If the RLU values of diluted samples fall outside the standard curve, samples should be diluted appropriately and re-tested.

TYPICAL STANDARD CURVE

A typical standard curve with RLU plotted on the Y-axis versus log10 anti-KLH IgM concentrations on the X-axis is shown below. This curve is for the purpose of illustration only and should not be used to calculate unknowns.

REFERENCES

Rev 050616