Guinea Pig Anti-KLH IgG ELISA

Life Diagnostics, Inc., Catalog Number: KLHG-7

Introduction
Measurement of KLH (keyhole limpet hemocyanin) induced anti-KLH antibody levels allows quantitative evaluation of the immune response. This ELISA is designed for the rapid and quantitative measurement of guinea pig anti-KLH IgG levels in serum or plasma.

Principle of the Assay
The guinea pig anti-KLH IgG test kit is based on a solid phase enzyme-linked immunosorbent assay (ELISA). The assay uses KLH for solid phase (microtiter wells) immobilization and horseradish peroxidase (HRP) conjugated anti-guinea pig IgG (Fc specific) for detection. Serum or plasma samples are diluted and incubated in the microtiter wells for 1 hour. The microtiter wells are subsequently washed, and HRP conjugate is added and incubated for 30 minutes. Anti-KLH IgG molecules are thus sandwiched between immobilized KLH and the detection antibody conjugate. The wells are then washed to remove unbound HRP-labeled antibodies, and TMB Reagent is added and incubated for 20 minutes at room temperature. This results in the development of a blue color. Color development is stopped by the addition of Stop Solution, changing the color to yellow, and optical density is measured spectrophotometrically at 450 nm. The concentration of anti-KLH IgG is proportional to the optical density of the test sample.

Materials and Components
Materials provided with the kit:
- KLH Coated 96-well Plate (provided as 12 strips of 8 wells)
- Enzyme Conjugate Reagent, 11 ml
- Reference Standard* (lyophilized)
- 20x Wash Solution, 50 ml
- Diluent, 60 ml
- TMB Reagent (One-Step), 11 ml
- Stop Solution (1N HCl), 11 ml

Materials required but not provided:
- Precision pipettes and tips
- Distilled or deionized water
- Polypropylene or glass tubes
- Vortex mixer
- Absorbent paper or paper towels
- Micro-plate incubator/shaker with mixing speed of ~150 rpm
- Plate washer
- Plate reader with an optical density range of 0-4 at 450nm
- Graph paper (PC graphing software is optional)

Storage
- The reference standard should be stored at -20°C for optimal stability
- All remaining kit components should be stored at 2-8°C

Wash Solution Preparation
The wash solution is provided as a 20x stock. Prior to use, dilute the contents of the bottle (50 ml) with 950 ml of distilled or deionized water.

Standard Preparation
1. The guinea pig anti-KLH IgG standard is provided as a lyophilized stock. Reconstitute with 100 μl of distilled or deionized water (the reconstituted standard is stable at 4°C for one week but should be aliquoted and frozen at -20°C after reconstitution if future use is intended).
2. Label 5 polypropylene or glass tubes as 100, 50, 25, 12.5 and 6.25 units/ml (u/ml).
3. Into the tube labeled 100 u/ml, pipette the volume of diluent detailed on the anti-KLH IgG standard vial label. Then add the indicated volume of anti-KLH IgG standard (shown on the anti-KLH IgG standard vial label) and mix gently. This provides the 100 u/ml standard.
4. Dispense 250 μl of diluent into the tubes labeled 50, 25, 12.5, and 6.25 u/ml.
5. Prepare a 50 u/ml standard by diluting and mixing 250 μl of the 100 u/ml standard with 250 μl of diluent in the tube labeled 50 u/ml.
6. Similarly prepare the 25, 12.5, and 6.25 u/ml standards by serial dilution.

Sample Preparation
General Note: Studies at Life Diagnostics, Inc.* indicate that anti-KLH IgG is present in serum from KLH immunized guinea pigs at concentrations of ~3 million u/ml. In order to obtain values within range of the standard curve, we suggest that

* Guinea pig anti-KLH IgG levels are measured in nominal units and are calibrated with reference anti-KLH guinea pig serum at Life Diagnostics, Inc.

† Guinea pigs were injected i.p. with 250 μg KLH in CFA, followed 14 days later with 100 μg KLH (s.c.) without adjuvant. Serum was collected on day 21.
samples be diluted 50,000 fold using the following procedure for each sample to be tested:
1. Dispense 249 μl and 398 μl of diluent into separate tubes.
2. Pipette and mix 1.0 μl of the serum sample into the tube containing 249 μl of diluent. This provides a 250 fold diluted sample.
3. Mix 2.0 μl of the 250 fold diluted sample with the 398 μl of diluent in the second tube. This provides a 50,000 fold dilution of the sample.
4. Repeat this procedure for each sample to be tested.

ASSAY PROCEDURE

1. Secure the desired number of coated wells in the holder.
2. Dispense 100 μl of standards and diluted samples into the wells (we recommend that samples be tested in duplicate).
3. Incubate on an orbital micro-plate shaker at 100-150 rpm at room temperature (25°C) for 1 hour.
4. Aspirate the contents of the microtiter wells and wash the wells 5 times with 1x wash solution using a plate washer (400 μl/well). The entire wash procedure should be performed as quickly as possible.
5. Strike the wells sharply onto absorbent paper or paper towels to remove all residual wash buffer.
6. Add 100 μl of enzyme conjugate reagent into each well.
7. Incubate on an orbital micro-plate shaker at 100-150 rpm at room temperature (25°C) for 30 minutes.
8. Wash as detailed in 4 to 5 above.
9. Dispense 100 μl of TMB Reagent into each well.
10. Gently mix on an orbital micro-plate shaker at 100-150 rpm at room temperature (25°C) for 20 minutes.
11. Stop the reaction by adding 100 μl of Stop Solution to each well.
12. Gently mix. It is important to make sure that all the blue color changes to yellow.
13. Read the optical density at 450 nm with a microtiter plate reader within 5 minutes.

CALCULATION OF RESULTS

1. Calculate the average absorbance values (A₄₅₀) for each set of reference standards and samples.
2. Construct a standard curve by plotting the mean absorbance obtained from each reference standard against its concentration in ng/ml on linear graph paper, with absorbance values on the vertical or Y-axis and concentrations on the horizontal or X-axis.
3. Using the mean absorbance value for each sample, determine the corresponding concentration of anti-KLH IgG in u/ml from the standard curve.
4. Multiply the derived concentration by the dilution factor to determine the actual concentration of anti-KLH IgG in the serum/plasma sample.
5. PC graphing software may be used for the above steps.
6. If the OD₄₅₀ values of samples fall outside the standard curve when tested at a 20,000 fold dilution, samples should be diluted appropriately and re-tested.

TYPICAL STANDARD CURVE

A typical standard curve with optical density readings at 450nm on the Y-axis against anti-KLH IgG concentrations on the X-axis is shown below. This curve is for the purpose of illustration only and should not be used to calculate unknowns. Each user should obtain his or her data and standard curve in each experiment.

<table>
<thead>
<tr>
<th>Anti-KLH IgG (u/ml)</th>
<th>A<sub>450</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.574</td>
</tr>
<tr>
<td>50</td>
<td>1.384</td>
</tr>
<tr>
<td>25</td>
<td>0.759</td>
</tr>
<tr>
<td>12.5</td>
<td>0.422</td>
</tr>
<tr>
<td>6.25</td>
<td>0.254</td>
</tr>
</tbody>
</table>

LIMITATIONS OF THE PROCEDURE

1. Reliable and reproducible results will be obtained when the assay procedure is carried out with a complete understanding of and in accordance with the instructions detailed above.
2. The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings.

REFERENCES

Rev 041315NC

For technical assistance please email us at techsupport@lifediagnostics.com