INTRODUCTION
Haptoglobin is an acute phase protein that is elevated in the serum of most mammals during injury, infection and disease. In cats, it has been reported that serum haptoglobin increases up to ten-fold during the acute phase response (ref 1).

PRINCIPLE OF THE ASSAY
The cat haptoglobin SPARCL™ (Spatial Proximity Analyte Reagent Capture Luminescence, ref 2) assay uses two cat haptoglobin-specific antibodies. One is conjugated to horseradish peroxidase (HRP), the other is conjugated to acridan, a chemiluminescent substrate. When the HRP and acridan conjugated antibodies bind to haptoglobin they are brought into close proximity. With the addition of hydrogen peroxide, HRP catalyzes oxidation of proximal acridan molecules causing a flash of chemiluminescence. Acridan conjugated antibodies distant from HRP produce no signal. This principle allows the development of a homogeneous assay that allows rapid measurement of haptoglobin concentrations.

The HRP and acridan conjugated antibodies provided with the kit are mixed with standards and diluted samples in wells of the 96-well SPARCL™ plate provided with the kit. After incubation for 30 minutes on a shaker at 25°C and 150 rpm, the plate is placed into a luminometer. Trigger solution containing hydrogen peroxide is injected into each well and luminescence is immediately measured. The concentration of haptoglobin is proportional to luminescence and is derived from a standard curve.

MATERIALS AND COMPONENTS

Materials provided with the kit:
- Anti-cat haptoglobin HRP conjugate. Store ≤ -70°C
- Anti-cat haptoglobin acridan conjugate. Store ≤ -70°C
- Cat haptoglobin stock (3 vials). Store ≤ -70°C
- Diluent (CSD50-1). 2 x 50 ml
- Trigger solution. 7 ml
- White SPARCL™ plate (12 x 8-well)
- Clear untreated 96-well plate

Materials required but not provided:
- Precision pipettes and tips
- Polypropylene tubes
- Vortex mixer
- Micro-Plate incubator/shaker
- Luminometer capable of simultaneous injection & measurement
- PC graphing software

STORAGE
Store the HRP conjugate, acridan conjugate and haptoglobin stock at -70°C (they may be stored at -20°C for one week). The remainder of the kit should be stored at 2-8°C. The SPARCL™ plate should be kept in a sealed bag with desiccant and antioxidant. The kit will remain stable for at least six months from the date of purchase, provided that the components are stored as described above.

GENERAL INSTRUCTIONS
The dilution buffer and 8-well strips used in the assay should be allowed to reach room temperature (25°C) before use.

STANDARD PREPARATION
The cat haptoglobin stock is comprised of purified cat haptoglobin lyophilized in a carrier protein matrix.
1. Reconstitute the lyophilized stock as described on the vial label. Mix gently until dissolved.
2. Label 8 polypropylene tubes3 as 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78 and 0.39 ng/ml.
3. Into the tube labeled 50 ng/ml, pipette the volume of diluent detailed on the stock vial label. Then add the indicated volume of haptoglobin stock and mix gently. This provides the 50 ng/ml standard.
4. Dispense 150 μl of diluent into the tubes labeled 25, 12.5, 6.25, 3.13, 1.56, 0.78 and 0.39 ng/ml.
5. Pipette 150 μl of the 50 ng/ml haptoglobin standard into the tube labeled 25 ng/ml and mix. This provides the 25 ng/ml haptoglobin standard.
6. Similarly prepare the remaining standards by two-fold serial dilution.

Please Note: Use the standards within one hour of preparation.

SAMPLE PREPARATION
Serum or heparinized plasma should be prepared as quickly as possible after blood collection. If samples cannot be assayed immediately they should be frozen at or below –20°C. Avoid repeated freeze-thaws.

The cat haptoglobin SPARCL assay uses a homogeneous format and is therefore susceptible to a prozone or “hook effect” at high haptoglobin concentrations. We found that at a dilution of 20,000-fold all plasma samples gave values within range of the standard curve and a prozone effect could be avoided. However, optimal dilutions should be determined by the end user. In our studies, we found that plasma haptoglobin concentrations ranged from 40 to 270 μg/ml.

A dilution of 20,000-fold can be achieved as follows:
1. Dispense 198 μl and 398 μl of diluent into separate tubes.
2. Pipette and mix 2.0 μl of the serum sample into the tube containing 198 μl of diluent. This provides a 100-fold dilution.
3. Mix 2.0 μl of the 100-fold diluted sample with the 398 μl of diluent in the second tube. This provides a 20,000-fold dilution.

CONJUGATE MIX PREPARATION
Instructions for preparation of the conjugate mix are detailed on the box that contains the HRP and acridan conjugates. If necessary, after thawing, briefly centrifuge to ensure that the contents are at the appropriate wells of the clear polystyrene plate and subsequently transferred to the SPARCL™ plate with a multipipettor. If using this method, ensure that an excess volume is aliquoted into the clear plate in order to ensure complete transfer of 50 μl aliquots to the SPARCL™ plate.

Life Diagnostics, Inc., P.O. Box 5205, West Chester, PA 19380
610-431-7707 – 610-431-7818 (Fax)
info@lifediagnostics.com – www.lifediagnostics.com
bottom of the tubes. Prepare the mix shortly before it is required using the diluent provided with the kit.

LUMINOMETER SETUP

1. The luminometer must be capable of injection and simultaneous measurement of luminescence without any delay.
2. Prime the luminometer injection port with 1 ml of trigger solution.
3. Place the injection needle into the injection port as needed for BMG luminometers.
4. Program the luminometer to inject 37.5 μl of trigger solution per well and to measure from time zero for 1 second (50 x 0.02 second intervals).
5. Define the format of the assay using the luminometer software.
6. Because the white SPARCL™ plate is provided as a 12 x 8-well strips, allowing use of fewer than 96-wells, make sure that the luminometer is programmed to inject trigger solution only into the wells being used.
7. We use a BMG LUMIstar Omega set at a gain of 3600. Optimal gain should be determined by the end user.
8. There are a number of manufacturers of luminometers that are equipped to run a SPARCL™ assay. Please contact Life Diagnostics or Lumigen (www.lumigen.com) to discuss your luminometer.

PROCEDURE

1. Before starting the assay ensure that the luminometer is primed with trigger solution and that the injection needle is positioned in the injection port.
2. Secure the desired number of SPARCL™ 8-well strips in the holder. Immediately seal unused strips in the resealable bag with desiccant and antioxidant. Store unused strips at 2-8°C.
3. Aliquot 50.0 μl of conjugate mix into each well.
4. Dispense 50.0 μl of standards and diluted samples into the wells (we recommend that standards and samples be tested in duplicate).
5. Incubate on an orbital micro-plate shaker at 150 rpm 25°C for 30 minutes.
6. After the 30-minute incubation, place the plate in the luminometer and measure luminescence after injection of trigger solution (37.5 μl).
7. Remove the plate from the luminometer and discard the used strips. Keep the plate frame if future use is intended.

CALCULATION OF RESULTS

1. Before calculating results, review the raw data. If artefacts (RLU spikes) are apparent immediately after injection of trigger solution, eliminate that portion of the luminescence profile from analysis for all wells.
2. Using graphing software, construct a standard curve by plotting the luminescence (RLU) for the standards versus Log_{10} of the haptoglobin concentration.
3. Fit data using a sigmoidal four parameter logistic equation.
4. Derive the corresponding concentration of haptoglobin in the samples from the standard curve (convert the antilog to concentration in ng/ml).
5. Multiply the derived concentration by the dilution factor to determine the actual concentration of haptoglobin in the serum or plasma sample.
6. If the RLU values of diluted samples fall outside the standard curve, samples should be diluted appropriately and re-tested.

TYPICAL STANDARD CURVE

A typical standard curve with RLU plotted on the Y-axis versus haptoglobin concentrations on the X-axis is shown below. This curve is for the purpose of illustration only. A standard curve must be run with each experiment.

<table>
<thead>
<tr>
<th>Haptoglobin (ng/ml)</th>
<th>RLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>141515</td>
</tr>
<tr>
<td>25</td>
<td>102608</td>
</tr>
<tr>
<td>12.5</td>
<td>74248</td>
</tr>
<tr>
<td>6.25</td>
<td>37397</td>
</tr>
<tr>
<td>3.13</td>
<td>19020</td>
</tr>
<tr>
<td>1.56</td>
<td>9737</td>
</tr>
<tr>
<td>0.78</td>
<td>5605</td>
</tr>
<tr>
<td>0.39</td>
<td>3798</td>
</tr>
</tbody>
</table>

REFERENCES

Rev 050516
For technical assistance please email us at techsupport@lifediagnostics.com