INTRODUCTION
Cardiac troponin-I (CTNI) is a component of the troponin complex that regulates muscle contraction. After cardiac injury, CTNI is released into the blood. Because it is expressed specifically in the heart it is an excellent biomarker of cardiac injury. In humans, CTNI levels peak 12-24 hours after injury, returning to baseline within 2-6 days. In mice, levels peak as early as 1 hour and return to normal within 1-3 days. Our ELISA kits have been used extensively since 2003 for measurement of CTNI in all species used in preclinical research. A representative list of publications citing their use can be found on our cardiac biomarker ELISA kits webpage (https://lifediagnostics.com/cardiac-biomarker-elisa-kits/).

PRINCIPLE OF THE ASSAY
This assay is intended for use with plasma samples. The ELISA uses two different antibodies that recognize a relatively protease-resistant epitope on CTNI. One is used for solid phase immobilization (microtiter wells). The second is conjugated to horse radish peroxidase (HRP) and used for detection. Plasma samples are first diluted with three volumes of plasma diluent. Standards and diluted samples are then incubated in the microtiter wells with HRP conjugate for one hour. This results in CTNI molecules being sandwiched between the immobilization and detection antibodies. The wells are washed to remove unbound HRP-conjugate. TMB is added and incubated for 20 minutes. If CTNI is present a blue color develops. Color development is stopped by addition of Stop solution, changing the color to yellow, and absorbance is measured at 450 nm. The concentration of CTNI is proportional to absorbance and is derived from a standard curve.

MATERIALS AND COMPONENTS
Materials provided with the kit:
- Anti-CTNI coated plate (12 x 8-well strips)
- CTNI Stock
- Standard diluent; PSD25-1, 25 ml
- Plasma diluent; PD25-1, 25 ml
- HRP Conjugate, 11 ml
- 20x Wash solution; TBS50-20, 50 ml
- TMB; TMB11-1, 11 ml
- Stop solution; SS11-1, 11 ml

Materials required but not provided:
- Pipettors and tips
- Distilled or deionized water
- Polypropylene or glass tubes
- Vortex mixer
- Absorbent paper or paper towels
- Plate incubator/shaker
- Plate washer
- Plate reader capable of measuring absorbance at 450 nm.
- Curve fitting software

STORAGE CONDITIONS
Store the lyophilized stock at or below -20°C. The remainder of the kit should be stored at 2-8°C and the microtiter plate should be kept in a sealed bag with desiccant. Kits will remain stable for six months from the date of purchase.

GENERAL INSTRUCTIONS
1. All reagents should be allowed to reach room temperature before use.
2. After thawing, a precipitate may be apparent in the standard diluent. The precipitate should be removed by centrifugation for 5 min at ~3000 rpm in a bench-top centrifuge. Use the clear supernatant.
3. Reliable and reproducible results will be obtained when the assay is carried out with a complete understanding of the instructions and with adherence to good laboratory practice.
4. The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings.
5. Laboratory temperature will influence absorbance readings. Our ELISA kits are calibrated using shaking incubators set at 150 rpm and 25°C. Performance of the assay at lower temperatures will result in lower absorbance values.

WASH SOLUTION PREPARATION
The wash solution is provided as a 20x stock. Prior to use, dilute the contents of the bottle (50 ml) with 950 ml of distilled or deionized water.

STANDARD PREPARATION
1. Reconstitute the lyophilized CTNI stock with de-ionized or distilled water as detailed on the vial label. Mix gently until dissolved.
2. Label 7 polypropylene tubes as 2.5, 1.25, 0.625, 0.313, 0.156, 0.078 and 0.039 ng/ml.
3. Into the tube labeled 10 ng/ml, pipette the volume of standard diluent detailed on the stock vial label. Then add the indicated volume of stock and mix gently. This provides the 10 ng/ml standard.
4. Pipette 250 µl of standard diluent into the tubes labeled 1.25, 0.625, 0.313, 0.156, 0.078, 0.039 ng/ml.
5. Prepare a 1.25 ng/ml standard by diluting and mixing 250 µl of the 2.5 ng/ml standard with 250 µl of diluent in the tube labeled 1.25 ng/ml. Similarly prepare the remaining standards by two-fold serial dilution.

SAMPLE COLLECTION AND PREPARATION
Plasma (EDTA, citrate or heparin) should be prepared as quickly as possible after blood collection and stored at 4°C. All samples should be similarly processed (i.e., storage times and temperatures should be the same for all samples). If plasma samples cannot be assayed within 4 hours of collection they should be frozen at –70°C and thawed only once prior to use. We recommend that samples be assayed in duplicate. Prior to assay, plasma samples should be diluted four-fold with plasma diluent. This can easily be accomplished by mixing 100 µl of each
plasma sample with 300 µl of plasma diluent in a polypropylene micro centrifuge tube.

ASSAY PROCEDURE

1. Secure the desired number of 8-well strips in the holder. Unused strips should be stored in the re-sealed bag with desiccant at 2-8°C for future use.
2. Add 100 µl of HRP-conjugate into each well.
3. Dispense 100 µl of standards and diluted samples into the wells (we recommend that standards and samples be run in duplicate).
4. Incubate on a plate shaker at 150 rpm and 25°C for one hour.
5. Empty and wash the microtiter wells 5x with 1x wash solution using a plate washer (400 µl/well).
6. Strike the wells sharply onto absorbent paper or paper towels to remove all residual droplets.
7. Dispense 100 µl of TMB into each well.
8. Incubate on an orbital micro-plate shaker at 150 rpm and 25°C for 20 minutes.
9. After 20 minutes, stop the reaction by adding 100 µl of Stop solution to each well.
10. Gently mix. It is important to make sure that all the blue color changes to yellow.
11. Read absorbance at 450 nm with a plate reader within 5 minutes.

CALCULATION OF RESULTS

1. Using curve fitting software, construct a standard curve by plotting absorbance values of the standards versus log10 of the concentration.
2. Fit the standard curve to a four-parameter logistic regression (4PL) equation (x axis = log10 concentration) and determine the concentration of the samples (derive the antilog).
3. Multiply the derived concentration by the dilution factor to determine the actual concentration in the original sample.
4. If the A450 values fall outside the standard curve, samples should be diluted appropriately and re-tested. If further dilution is required, freshly thawed plasma samples should first be diluted with three volumes of plasma diluent (4-fold dilution). The resulting mixture should then be diluted with standard diluent.

TYPICAL STANDARD CURVE

A typical standard curve is shown below. This is for illustration only. A standard curve must be generated for each experiment.

<table>
<thead>
<tr>
<th>CTNI (ng/ml)</th>
<th>A450</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2.509</td>
</tr>
<tr>
<td>1.25</td>
<td>1.367</td>
</tr>
<tr>
<td>0.625</td>
<td>0.771</td>
</tr>
<tr>
<td>0.313</td>
<td>0.431</td>
</tr>
<tr>
<td>0.156</td>
<td>0.275</td>
</tr>
<tr>
<td>0.078</td>
<td>0.172</td>
</tr>
<tr>
<td>0.039</td>
<td>0.119</td>
</tr>
</tbody>
</table>

REFERENCES


Rev 010518

For technical assistance please email us at techsupport@lifediagnostics.com