FOR RESEARCH USE ONLY

INTRODUCTION

CA 72-4 (cancer antigen 72-4), also known as tumor associated glycoprotein 72 (TAG-72) is a glycoprotein of 1000 kDa glycoprotein that is expressed on the surface of some tumor cells. Elevated serum levels of CA 72-4 may be associated with certain cancers.

PRINCIPLE OF THE ASSAY

The CA 72-4 SPARCL™ assay uses HRP and acridan conjugates of two different CA 72-4 monoclonal antibodies. When the HRP and acridan conjugated conjugates bind to CA 72-4 they are brought into molecular proximity. With the addition of hydrogen peroxide, HRP catalyzes oxidation of proximal acridan molecules causing a flash of chemiluminescence. Acridan conjugated antibodies distant from HRP produce no signal. This principle allows the development of a homogeneous assay that allows rapid measurement of CA 72-4.

MATERIALS AND COMPONENTS

Materials provided with the kit:
- Anti-CA 72-4 HRP conjugate: Store ≤ -70°C
- Anti-CA 72-4 acridan conjugate: Store ≤ -70°C
- CA 72-4 stock: Store ≤ -70°C
- Diluent; CSD50-1, 2 x 50 ml
- Trigger solution; TS7-1, 7 ml
- White SPARCL™ plate (12 x 8-well)
- Clear untreated 96-well plate

Materials required but not provided:
- Precision pipettes and tips
- Polypropylene microcentrifuge tubes
- Vortex mixer
- Plate incubator/shaker
- Lumimeter capable of simultaneous injection/measurement
- Graphing software

STORAGE

Store the HRP conjugate, acridan conjugate and CA 72-4 stock at or below -70°C (they may be stored at -20°C for one week). The remainder of the kit should be stored at 2-8°C. The SPARCL™ plate should be kept in a sealed bag with desiccant and antioxidant. The kit will remain stable for at least six months from the date of purchase, provided that the components are stored as described above.

STANDARD PREPARATION

The stock is comprised of purified CA 72-4 in a carrier protein matrix. Thaw the stock just before use.

1. Label 5 polypropylene tubes as 50, 25, 12.5, 6.25 and 3.13 μl/ml.
2. In the tube labelled 50 μl/ml prepare the 50 μl/ml standard as detailed on the CA 72-4 stock label.
3. Dispense 150 μl of diluent CSD50-1 into the tubes labelled 25, 12.5, 6.25 and 3.13 μl/ml.
4. Pipette 150 μl of the 200 μl/ml CA 72-4 standard into the tube labelled 25, 12.5, 6.25 and 3.13 μl/ml.
5. Similarly prepare the remaining standards by two-fold serial dilution.

Use the standards within 15 min of preparation. Store unused stock at -70°C if future use is intended.

SAMPLE PREPARATION

This kit is for research use only. It cannot be used for human diagnostic purposes. Serum, plasma (lithium-heparin or K3 EDTA) and ascites fluids can be tested with the assay. To avoid matrix

1Donor material was tested and found negative for HBsAg, anti-HCV and anti-HIV 1 & 2 by FDA approved methods. Donors tested negative for viral DNA/RNA for HBV, HIV 1 and HCV by PCR. However, this material should be handled with caution as potentially hazardous.

2The SPARCL technology was developed by Lumigen Corp.

3The plate has been treated with a reagent that reduces background chemiluminescence. Untreated plates cannot be used.
effects samples must be diluted at least 10-fold with CSD50-1. Optimum dilutions must be determined by the end user. Hemolyzed samples should not be tested because false low values may be obtained.

CONJUGATE MIX PREPARATION

Instructions for preparation of the conjugate mix are detailed on the box that contains the HRP and acridan conjugates. If necessary, after thawing, briefly centrifuge to ensure that the contents are at the bottom of the vials. Prepare the mix shortly before use using the CSD50-1 diluent provided with the kit.

LUMINOMETER SETUP

1. The luminometer must be capable of injection and simultaneous measurement of luminescence without any delay.
2. Prime the luminometer injection port with 1 ml of trigger solution.
3. Place the injection needle into the injection port as needed for BMG luminometers.
4. Program the luminometer to inject 37.5 μl of trigger solution per well and to measure from time zero for 1 second (50 x 0.02 second intervals).
5. Define the format of the assay using the luminometer software.
6. Because the white SPARCL™ plate is provided as 12 x 8-well strips, allowing use of fewer than 96-wells, make sure that the luminometer is programmed to inject trigger solution only into the wells being used.
7. We use a BMG LUMIstar Omega set at a gain of 3600. Optimal gain should be determined by the end user.
8. There are a number of manufacturers of luminometers that are equipped to run a SPARCL™ assay. Please contact Life Diagnostics or Lumigen (www.lumigen.com) to discuss your luminometer.

PROCEDURE

1. Before starting the assay ensure that the luminometer is primed with trigger solution and that the injection needle is positioned in the injection port.
2. Secure the desired number of SPARCL™ 8-well strips in the holder. Immediately seal unused strips in the resealable bag with desiccant and antioxidant. Store unused strips at 2-8°C.
3. Aliquot 25.0 μl of conjugate mix into each well.
4. Dispense 50.0 μl of standards and diluted samples into the wells (we recommend that standards and samples be tested in duplicate).
5. Incubate on an orbital micro-plate shaker at 150 rpm 25°C for 30 minutes.
6. After the 30-minute incubation, place the plate in the luminometer and measure luminescence after injection of trigger solution (37.5 μl).
7. Remove the plate from the luminometer and discard the used strips. Keep the plate frame if future use is intended.

CALCULATION OF RESULTS

1. Before calculating results, review the raw data. If artefacts (RLU spikes) are apparent immediately after injection of trigger solution, eliminate that portion of the luminescence profile from analysis for all wells. We routinely use the sum of RLU values from a 100-980 ms data collection window.
2. Determine the sum of RLU values within the data collection window for the standards and samples.
3. Using graphing software, construct a standard curve by plotting the sum of the RLU values for the standards versus CA 72-4 concentration and fit to a single site, total and non-specific binding model.
4. Derive the corresponding concentration of CA 72-4 in the samples from the standard curve.
5. Multiply the derived concentration by the dilution factor to determine the concentration of CA 72-4 in the original sample.
6. If the sum of the RLU values of diluted samples fall outside the standard curve, samples should be appropriately diluted and re-tested.

TYPICAL STANDARD CURVE

A typical standard curve with sum of RLU plotted on the Y-axis versus CA 72-4 concentrations on the X-axis is shown below. This curve is for the purpose of illustration only and should not be used to calculate unknowns. A standard curve must be run for each experiment.

<table>
<thead>
<tr>
<th>CA 72-4 (u/ml)</th>
<th>RLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>23835</td>
</tr>
<tr>
<td>25</td>
<td>12772</td>
</tr>
<tr>
<td>12.5</td>
<td>7623</td>
</tr>
<tr>
<td>6.25</td>
<td>3581</td>
</tr>
<tr>
<td>3.13</td>
<td>1982</td>
</tr>
</tbody>
</table>

ASSAY PERFORMANCE

In experiments where samples were spiked to 500 u/ml CA 72-4 and tested at dilutions of 10-fold or greater, we found recoveries of 92±11%, 63±17% and 92±3% for serum, lithium-heparin plasma and K3 EDTA plasma respectively.

REFERENCES

Rev 020118
For technical assistance please email us at techsupport@lifediagnostics.com