INTRODUCTION
Serum alpha-fetoprotein (AFP) levels are elevated in dogs suffering from liver cancer, liver disease and some non-hepatic cancers.1-3 Levels decrease after surgical removal of tumors and during cancer remission.

PRINCIPLE OF THE ASSAY
The AFP SPARCL™ assay uses HRP and acridan conjugates of two different AFP antibodies. When the HRP and acridan conjugates bind to AFP they are brought into molecular proximity. With the addition of hydrogen peroxide, HRP catalyzes oxidation of proximal acridan molecules causing a flash of chemiluminescence. Acridan conjugated antibodies distant from HRP produce no signal. This principle allows the development of a homogeneous assay that allows rapid measurement of AFP.

MATERIALS AND COMPONENTS

Materials provided with the kit:
- Anti-AFP HRP conjugate
- Anti-AFP acridan conjugate
- AFP stock
- Diluent; CSD50-1, 2 x 50 ml
- Trigger solution; TS7-1, 7 ml
- White SPARCL™ plate (12 x 8-well)

Materials required but not provided:
- Precision pipettes and tips
- Polypropylene microcentrifuge tubes
- Vortex mixer
- Plate incubator/shaker
- Luminometer capable of simultaneous injection/measurement
- Graphing software

STORAGE
Store the HRP conjugate, acridan conjugate and AFP stock at or below -70°C (they may be stored at -20°C for one week). The remainder of the kit should be stored at 2-8°C. The SPARCL™ plate should be kept in a sealed bag with desiccant and antioxidant. The kit will remain stable for at least six months from the date of purchase, provided that the components are stored as described above.

GENERAL INSTRUCTIONS
1. Please take the time to completely read all instructions before starting your assay. Contact us if you need clarification.

2. All reagents used in the assay should be allowed to reach room temperature (25°C) before use.
3. It is important that standards and samples be added to the SPARCL™ plate quickly. If testing large numbers of samples, rather than pipetting standards and samples directly into the white SPARCL™ plate using a single channel pipettor, we recommend the following. First, pipette an excess volume of standards and samples into appropriate wells of the clear 96-well plate. Then use an 8- or 12-channel multipipettor to quickly and efficiently transfer 50 µl aliquots to the appropriate wells of the white SPARCL™ plate. The wells of the clear plate hold a maximum volume of 300 µl.
4. Follow the sequence of events below when running the assay.

STANDARD PREPARATION

The stock is comprised of pure AFP in a carrier protein matrix. Thaw the stock just before use.

1. Label 6 polypropylene tubes as 50, 25, 12.5, 6.25, 3.13 and 1.56 ng/ml.
2. In the tube labelled 50 ng/ml prepare the 50 ng/ml standard as detailed on the AFP stock label.
3. Dispense 150 µl of diluent CSD50-1 into the tubes labelled 25, 12.5, 6.25, 3.13 and 1.56 ng/ml.
4. Pipette 150 µl of the 50 ng/ml AFP standard into the tube labeled 25 ng/ml and mix. This provides the 25 ng/ml AFP standard.
5. Similarly prepare the remaining standards by two-fold serial dilution.

SAMPLE PREPARATION
Serum can be tested with the assay. To avoid matrix effects samples must be diluted at least 10-fold with CSD50-1. Optimum dilutions must be determined by the end user. Hemolyzed samples should not be tested because false low values may be obtained. Because the assay is homogeneous it is susceptible to a hook effect; samples with high AFP levels may give false low values when tested at low dilutions. We therefore recommend that samples be tested at several dilutions (10, 20, 40, 80…fold).

The SPARCL technology was developed by Lumigen Corp.

bThe plate has been treated with a reagent that reduces background chemiluminescence. Untreated plates cannot be used.
We found AFP levels ranging from ~50 ng/ml in healthy animals to >5000 ng/ml in serum from dogs reported as sick by veterinarians.

CONJUGATE MIX PREPARATION
Instructions for preparation of the conjugate mix are detailed on the box that contains the HRP and acridan conjugates. If necessary, after thawing, briefly centrifuge to ensure that the contents are at the bottom of the vials. Prepare the mix shortly before use using the CSD50-1 diluent provided with the kit.

LUMINOMETER SETUP
1. The luminometer must be capable of injection and simultaneous measurement of luminescence without any delay.
2. Prime the luminometer injection port with 1 ml of trigger solution.
3. Place the injection needle into the injection port as needed for BMG luminometers.
4. Program the luminometer to inject 37.5 µl of trigger solution per well and to measure from time zero for 1 second (50 x 0.02 second intervals).
5. Define the format of the assay using the luminometer software.
6. Because the white SPARCL™ plate is provided as 12 x 8-well strips, allowing use of fewer than 96-wells, make sure that the luminometer is programmed to inject trigger solution only into the wells being used.
7. We use a BMG LUMIstar Omega set at a gain of 3600. Optimal gain should be determined by the end user.
8. There are a number of manufacturers of luminometers that are equipped to run a SPARCL™ assay. Please contact Life Diagnostics or Lumigen (www.lumigen.com) to discuss your luminometer.

PROCEDURE
1. Before starting the assay ensure that the luminometer is primed with trigger solution and that the injection needle is positioned in the injection port.
2. Secure the desired number of SPARCL™ 8-well strips in the holder. Immediately seal unused strips in the resealable bag with desiccant and antioxidant. Store unused strips at 2-8°C.
3. Aliquot 25.0 µl of conjugate mix into each well.
4. Dispense 50.0 µl of standards and diluted samples into the wells (we recommend that standards and samples be tested in duplicate).
5. Incubate on an orbital micro-plate shaker at 150 rpm 25°C for 30 minutes.
6. After the 30-minute incubation, place the plate in the luminometer and measure luminescence after injection of trigger solution (37.5 µl).
7. Remove the plate from the luminometer and discard the used strips. Keep the plate frame if future use is intended.

CALCULATION OF RESULTS
1. Before calculating results, review the raw data. If artefacts (RLU spikes) are apparent immediately after injection of trigger solution, eliminate that portion of the luminescence profile from analysis for all wells. We routinely use the sum of RLU values from a 100-980 ms data collection window.
2. Determine the sum of RLU values within the data collection window for the standards and samples.
3. Using graphing software, construct a standard curve by plotting the sum of the RLU values for the standards versus the AFP concentration and fit to single site, total and nonspecific binding model.
4. Derive the corresponding concentration of AFP in the samples from the standard curve.
5. Multiply the derived concentration by the dilution factor to determine the concentration of AFP in the original sample.
6. If the sum of the RLU values of diluted samples fall outside the standard curve, samples should be appropriately diluted and re-tested.

TYPICAL STANDARD CURVE
A typical standard curve with sum of RLU plotted on the Y-axis versus AFP concentrations on the X-axis is shown below. This curve is for the purpose of illustration only and should not be used to calculate unknowns. A standard curve must be run for each experiment.

<table>
<thead>
<tr>
<th>AFP (ng/ml)</th>
<th>RLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>21845</td>
</tr>
<tr>
<td>25</td>
<td>9616</td>
</tr>
<tr>
<td>12.5</td>
<td>5368</td>
</tr>
<tr>
<td>6.25</td>
<td>2179</td>
</tr>
<tr>
<td>3.13</td>
<td>1322</td>
</tr>
<tr>
<td>1.56</td>
<td>916</td>
</tr>
</tbody>
</table>

REFERENCES

Rev 032118
For technical assistance please email us at techsupport@lifediagnostics.com